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Abstract.  A Comprehensive Ring Current Model (CRCM) has been developed that couples the

Rice Convection Model (RCM) and the kinetic model of Fok and coworkers.  The coupled model

is able to simulate, for the first time using a self-consistently calculated electric field, the evolution

of an inner magnetosphere plasma distribution that conserves the first two adiabatic invariants.  The

traditional RCM calculates the ionospheric electric fields and currents consistent with a

magnetospheric ion distribution that is assumed to be isotropic in pitch angle.  The Fok model

calculates the plasma distribution by solving the Boltzmann equation with specified electric and

magnetic fields.  To combine the RCM and the Fok model, the RCM Birkeland-current algorithm

has been generalized to arbitrary pitch-angle distributions.  Given a specification of height-

integrated ionospheric conductance, the RCM component of the CRCM computes the ionospheric

electric field and currents.  The Fok model then advances the ring current plasma distribution using

the electric field computed by the RCM, and at the same time calculates losses along particle drift

paths.  We present the logic of CRCM and the first validation results following the H+ distribution

during the previously-studied magnetic storm of May 2, 1986.  The H+ fluxes calculated by the

coupled model agree very well with observations by AMPTE/CCE.  In particular, the coupled model

is able to reproduce the high H+ flux seen on the dayside at L ~ 2.3 that the previous simulation,
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which employed a Stern-Volland convection model with shielding factor 2, failed to produce.

Though the Stern-Volland and CRCM electric fields differ in several respects, the most notable

difference is that the CRCM predicts strong electric fields near the Earth in the storm main phase,

particularly in the dusk-midnight quadrant.  Thus the CRCM injects particles more deeply and

more quickly.

1. Introduction

The terrestrial ring current is a large-scale electrical current system encircling Earth's

magnetic equator at typical radial distances of 2 to 8 earth radii (RE).  The current is carried

principally by westward drifting trapped ions in the 1–300 keV energy range [e.g., Daglis et al.,

1999].  During magnetic storms and substorms, the ring current can be greatly strengthened when

bursts of intense electric field transport ions from the plasma sheet and outer-ring-current earthward

and energize them.  The enhanced ring current produces a global geomagnetic disturbance and

significantly contributes to the magnetic depression on the Earth's surface as measured by the Dst

index [Rostoker, 1972], which is widely used to identify the growth and decay of magnetic storms.

During the recovery phase of a magnetic storm, the ring current decreases via various processes,

e.g., charge exchange with the neutral atmosphere, interactions with plasma waves and Coulomb

collisions with the plasmasphere.  Eventually the magnetic-storm energy stored in the ring current is

deposited into the underlying ionosphere and atmosphere.

Numerous theoretical models have been developed to study the ring current and its

aeronomical effects [e.g., Chen et al., 1993, 1994; Fok et al., 1993, 1996, 1999; Fok and Moore,

1997; Jordanova et al., 1996, 1997].  Most of these models take into account loss processes along

particle drift paths and consider full pitch-angle distributions, but all of them employ electric and

magnetic field models that are not computed self-consistently with the plasma distribution.  The

Rice Convection Model (RCM), on the other hand, utilizes a sophisticated method of calculating
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electric fields in the ionosphere-magnetosphere system, consistent with the particle distribution in

the magnetosphere [Harel et al., 1981].  However, the RCM calculates drifts on the basis of an

assumed isotropic pitch-angle distribution.

Motivated by the well-known strengths and deficiencies of ring current models and by the

desire to calculate ring current plasma distributions self-consistently, we have developed a

comprehensive ring current model (CRCM) by combining the RCM and Fok's kinetic model.  Both

the RCM and the Fok model set their grids in the ionosphere and place the high-latitude boundary

in the auroral zone.  The traditional RCM assumes pitch angle isotropy, while the Fok model

assumes conservation of the first and the second adiabatic invariants.  In order to couple with the

Fok model, the RCM algorithm for calculating Birkeland current has been generalized to arbitrary

pitch-angle distributions.  Given a specification of ionospheric conductance and initial ring current

distribution, the RCM component of the CRCM computes the ionospheric electric field and

currents.  The Fok model then advances the plasma distribution using the electric field computed by

the RCM, and at the same time calculates particle losses along drift paths.  The updated

distributions are then returned to the RCM to complete the computation cycle.  In brief, the RCM

serves as an electric-field solver in the CRCM and the Fok model plays the role of a particle tracer.

This combined model includes major loss mechanisms and complete pitch-angle distribution, and at

the same time considers electric coupling between the ionosphere and the magnetosphere.  In the

following sections, we will present the detailed model logic of CRCM and the first validation results

following the H+ distribution during the previously studied magnetic storm of May 2, 1986.

2. Generalized RCM for Anisotropic Distributions

The RCM is an algorithm for calculating the distribution of magnetospheric particles (above

~ 1 keV) as well as the electrostatic potential, and magnetic-field-aligned current in the closed-field-

line region of the magnetosphere.  Although an early version of the RCM pictured all
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magnetospheric particles as mirroring at the equatorial plane [Jaggi and Wolf, 1973], the model has

generally used a formalism that assumes that the particles are isotropic [Harel et al., 1981; Wolf,

1983].  The RCM implicitly assumes that the particles are subject to a pitch-angle scattering

process that randomizes pitch angles in a time small compared to a drift period without changing

particle energy.  This is the simplest reasonable assumption for the plasma sheet, which is observed

to have a basically isotropic distribution [Stiles et al., 1978].  The plasma sheet ion distribution is

apparently kept isotropic because of chaotic orbits [e.g., Sergeev et al., 1993], but the isotropy

assumption is clearly inaccurate for the ring current region.

Effects of electron loss are often included in the RCM [e.g., Erickson et al., 1991; Wolf et

al., 1991] in terms of their effect on ionospheric conductance and on the total number of particles in

each flux tube, but the loss-cone-associated anisotropy is assumed to affect a small range of pitch

angles, and the net drift of the particles is still computed under the assumption of isotropy.  Ion loss

has generally not been included in past RCM runs.

For the usual case of an isotropic distribution function, RCM particles are characterized by

an energy invariant λj, where

W Vj j= −λ 2 3/ (1)

Wj is the kinetic energy of the particle, including gyro- and bounce motion, and V is the volume of a

magnetic flux tube containing one unit of magnetic flux [Harel et al., 1981; Wolf, 1983].  (The

particle drift velocity is assumed to be much smaller than the gyration and bounce velocities.)  A

given subset of particles j is characterized by a given chemical species (electrons, H+ ions,

sometimes O+ ions), and given energy invariant λj.  The bounce-averaged drift velocity is given by

vD = E ×B

B2 +
B× ∇ W j

qj B
2 (2)
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In the ionosphere, the electric field in (2) is normally assumed to be a potential field, for time scales

more than a few minutes.  In the magnetosphere, where the magnetic field changes significantly

with time, E has both potential and inductive terms.  The equation for advancing the particle

distribution is

∂
∂t

+ vD ⋅ ∇



 η j = −

η j

τ j

(3)

where ηj is the number of particles of type j per unit magnetic flux, and τj is the loss lifetime.  The

number density nj = ηj/V.  The MHD pressure is expressed in terms of RCM parameters λj and ηj

as

P V j
j

j= − ∑2
3

5 3/ λ η (4)

Starting from a distribution of magnetospheric particles, the RCM calculates the Birkeland

current into the ionosphere from the Vasyliunas [1970] equation, which can be written as

J||i
Bi

= b̂ ⋅ ∇ V × ∇ P

B
(5)

where J||i is the current per unit area parallel to Bi; positive current is down into the ionosphere, and

both  hemispheres are counted together; Bi is the magnetic field strength in the ionosphere at those

locations, with symmetry assumed between the two hemispheres; b̂ is a unit vector along B.  The

right side of (5) is constant along a field line and can therefore be evaluated anywhere along the

line.  Substituting (1) and (4) in (5) we can re-express the Vasyliunas equation in terms of RCM

variables [Wolf, 1983]:

J||i
Bi

= 1
B

b̂
j
∑ ⋅ ∇ η j × ∇ W j( ) (6)

The RCM calculates the distribution of ionospheric potential Φ by solving
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∇ ⋅ −

t
Σ ⋅ ∇Φ( ) = J||i sin I (7)

where   
t
Σ  is a tensor representing ionospheric Hall and Pedersen conductance (both hemispheres

together); I is the magnetic dip angle.  Sometimes a neutral-wind term is added to (7) [e.g., Spiro et

al., 1988].  The ionospheric conductance is generally taken from a background model that includes

ionization by sunlight and some kind of auroral enhancement model.  Once the ionospheric

potential distribution is calculated by solution of (7), that distribution is mapped along magnetic

field lines to the equatorial plane, where it is used in the calculation of the drift velocity.  The major

inputs to the RCM are the magnetic-field model, the conductance model, the initial and outer-

boundary plasma distributions, and the potential distribution on the outer (high-L) boundary.

We need to modify the Vasyliunas equation ((5) or (6)) for the case where the pressure

tensor is gyrotropic but not isotropic.  Heinemann [1990] used anisotropic-fluid theory to derive a

generalized Vasyliunas equation for a gyrotropic plasma, and Birmingham [1992] used kinetic

theory to derive another form.  However, neither of those is convenient to use in the CRCM, which

follows bounce-averaged drifts.  We therefore derive another form from drift theory.  For the case

where the particle distributions are characterized by the invariants M and K instead of λj, and M and

K are assumed to be conserved as a particles drifts.  The bounce-averaged gradient-curvature drift

velocity is given by [Wolf, 1983],

vGC =
B× ∇ W j (M, K,x)

qj B
2 (8)

where M is the first adiabatic invariant and

K B B s dsm
s

s

ms

mn

= −∫ ( )  (9)

Here Bm is the magnetic field at the mirror point, and smn and sms are the northern and southern

hemisphere mirror points.  In the case of zero parallel electric field, K is related to the second
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adiabatic invariant, J by K = J / 8moM  [Roederer, 1970].  (Note the strong resemblance between

(8) and the gradient/curvature-drift part of (2)).  Equation (8) is valid anywhere on a field line.  We

adopt the bookkeeping convention of mapping all magnetospheric particles along field lines to the

equatorial plane.  The current per unit length in that plane due to particles of type j is given by

jGC, j,E = (η j BE )qjvGC, j,E = η jb̂E × ∇ EW j (10)

where BE is the equatorial magnetic field and ηjBE is the number of particles of type j per unit area

in the equatorial plane, and we have used (8) in establishing the second equality.  By equating J||/B

in the ionosphere to −(∇ ⋅ jGC )E / BE  we obtain, from (10),

j||i
Bi

= 1
BE

b̂E ⋅ ∇ Eη j × ∇ EW j (M, K,x) =
j
∑ 1

B
b̂ ⋅ ∇ η j × ∇ W j (M, K,x)

j
∑ (11)

Note the similarity between (6) and (11).  The expression after the last equal sign in (11) can be

evaluated anywhere on the field line.  In the new coupled code, the equations are solved in the

ionosphere, where the magnetic field is assumed to be a dipole.  The downward Birkeland current

per unit area on an ionospheric shell of radius ri (6500 km) is given by

J|| =
1

ri
2 cos li

∂η j

∂li

∂W j

∂φi
−
∂η j

∂φi

∂W j

∂li





j

∑ (12)

where li and φi are ionospheric latitude and local time.

3. Coupling Fok's Kinetic Model With the Generalized RCM

The Fok kinetic model calculates the temporal variation of the phase space density of a

particle species s, by solving the following bounce-averaged Boltzmann transport equation:
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∂f s
∂t

+ l̇i
∂f s
∂li

+ φ̇i

∂f s
∂φi

= −vσs n
H

f s −
f s

0.5τb






 loss
cone

(13)

where f s = f s t,li ,φi , M, K( )  is the average distribution function on the field line between mirror

points, li is the magnetic latitude at the ionospheric location of the geomagnetic field line, σs is the

cross section for charge exchange of species s with the neutral hydrogen, nH is the hydrogen

density, and τb is the bounce period.  The second term on the right hand side of (13) is applied only

to particles with pitch angles inside the loss cone, which is defined at about 100 km altitude.  This

study includes only loss due to charge exchange with neutral hydrogen and to the loss cone.

In the Fok model the motion of the particles is described by their drifts across field lines

which are labeled by their ionospheric foot points.  The shape of a field line may change but the

ionospheric foot points are assumed to be fixed and essentially dipolar.  The bounce-averaged drift

velocities, l̇i  and φ̇i , can be expressed as [Fok and Moore, 1997]:

l̇i = − 1
qξ

∂H

∂φi

φ̇i = 1
qξ

∂H

∂li

(14)

where ξ = ME sin(2li)/ri, and ME is the Earth's magnetic dipole moment.  The Hamiltonian H is

given by

H W q q
M

r
lE

i
i= + −Φ Ω

2
2cos (15)

where Ω is the angular velocity of the rotation of the Earth itself and W is the particle kinetic energy

which is a function of M and K.  The derivatives of the first, second and third terms on the right

hand side of (15) correspond to the geomagnetic gradient-curvature drift, electric drift (convection)

and corotation (e.g., Fok and Moore [1997]), respectively, of a charged particle.

To couple the Fok model and the RCM, the phase space density obtained from (13) has to

be converted to the RCM variable ηj, which represents the number of particles per unit magnetic
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flux in the range ∆M ∆K.  We show in the Appendix that the ηj associated with a range ∆M ∆K is

related to the distribution function by

η j = 4 2πmo
3/2 f sMj

1/2∆Mj∆K j (16)

For a given initial plasma distribution fs , we calculate the corresponding η j and apply the

generalized RCM algorithm to calculate the ionosphere potential (Φ).  We then calculate particle

drifts l̇i  and φ̇i  using (14).  The particle distribution is advanced by solving (13) to complete

the computation cycle.

4. Simulated H+ distribution during the Storm on May 2, 1986

We have tested the performance of the CRCM by simulating the previously studied

magnetic storm of May 2, 1986 [Fok et al., 1996].  On that day AMTPE/CCE (Active

Magnetospheric Particle Tracer Explorers/Charge Composition Explorer) crossed the ring current

region on two orbits, traversing the post-midnight and pre-noon sectors.  The first orbit (~ 5 UT)

was before the storm onset.  The second orbit was near the end of the storm main phase at ~ 20 UT

when Dst reached ~ –80 nT.  The charge-energy-mass (CHEM) instrument on CCE measured

differential fluxes of H+ and other ions in the energy range of 1-300 keV/q.  Fok et al. [1996]

calculated the H+ fluxes during this storm using their ring current model assuming a dipolar

magnetic field and a Stern-Volland type convection (Φ=Φo(sin2θp/sin2θi)γsin(φi -φoffset)) [Volland,

1973; Stern, 1975] with shielding factor γ = 2 and φoffset = 2 hours.  The values of γ and φoffset

were chosen to best fit the CHEM measurements.  In general the simulations agreed very well with

the observations, except that the model failed to reproduce the observed high H+ fluxes on the

dayside at L ~ 2.3.

We have revisited the storm on May 2, 1986 and simulated the H+ fluxes using the CRCM.

The simulation region in the ionosphere is set from 44.5˚ to 67.2˚ magnetic latitude.  We assume
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the potential at the poleward boundary has the form:  Φp = Φo sinφi , with Φo changing according

to instantaneous Kp value.  Φo (in kV) is assumed to be 2.0, 3.3, 5.5, 9.2, 15, 24, 37, 51, 61, 61

corresponding to Kp = 0, 1, ..., 9 [Maynard and Chen, 1975].  The RCM conductance model

superimposes a Hardy et al. [1987] auroral enhancement on a background conductance based on

the MSIS neutral atmosphere [Hedin et al., 1991], the IRI-90 ionospheric model [Bilitza et al.,

1993], and collision-frequency expressions given by Riley [1994].  The magnetic field is assumed

to be a dipole because in this study we only consider the inner magnetosphere at L < 7.  The initial

distribution at 2 UT was taken from the H+ fluxes seen by CCE/CHEM during quiet periods of the

mission [Sheldon and Hamilton, 1993].  The H+ fluxes at L = 6.8 measured by CCE/CHEM at ~ 8

and 24 UT on May 2, 1986 are used as boundary conditions, which are assumed to be independent

of local time.  The instantaneous boundary fluxes are obtained by linear interpolation in UT.   In

summary, the magnetic field model, the initial H+ fluxes and the boundary fluxes are the same as

those used in Fok et al. [1996].  The distinct difference of this study from Fok et al. [1996] is the

use of the RCM electric field in place of the Stern-Volland analytic electric field model.

Plate 1-i shows the CRCM simulated equatorial fluxes during the storm at three times that

are labeled in the Kp plot (top panel).  Plate 1-iii shows the corresponding fluxes using the Stern-

Volland electric field.  The H+ energy distribution is color coded as shown in the color wheel (top-

right corner) with red brightness representing low-energy (1–5 keV) flux, green representing

medium-energy (5–40 keV) flux, and blue representing high-energy (40–300 keV) flux.  The color

bars show the scale of the brightness of each color.  In this visualization, yellow signifies the

existence of low- and medium energy ions but lack of high-energy particles.  Similarly magenta

represents a mix of low- and high-energy plasmas with deficiency of particles at medium energies.

White indicates that the average fluxes in all three energy ranges are above the flux scale limit,

which is 5×105 cm-2s-1sr-1keV-1 in Plate 1.  The corresponding convection field potential contours

(in kV) calculated by the CRCM are plotted in the panels (ii), while the Stern-Volland patterns are

in panels (iv).
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Plate 1-i-a represents the pre-storm quiet time distribution [Sheldon and Hamilton, 1993].

Due to the long charge exchange lifetimes of high-energy H+, the inner ring current consists

primarily of protons with energy >100 keV (blue color) that have slowly diffused in from higher L

shells.  This population does not change noticeably during the 1-day main phase of the storm.  The

outer ring current, on the other hand, contains mainly the low- to medium-energy H+ (orange color)

drifting sunward from the plasma sheet.   The transition region in between is a mixture of low- and

high-energy ions (magenta ring).  The convection field is weak at this time (Plate 1-ii-a).

At 11 UT (column b of Plate 1), convection becomes stronger and the potential drop across

the simulation boundary is about 45 kV.  The convection electric field pushes ions earthward on the

nightside (the bright yellow band).  The green-blue area on the dusk side is not quickly accessible

to plasma-sheet H+ ions of < 5 keV.  Similarly, the magenta-blue area is the forbidden region for

medium-energy (5–40 keV) ions.  The blue "tear drop" is the overlap of these two regions.  Neither

low- nor medium-energy ions from the plasma sheet can penetrate into this region at this time.

Near the end of the main phase at 23 UT (column c of Plate 1), the potential drop across the

simulation region reaches 100 kV.  The strong convection field causes deep penetration of the

freshly injected plasma sheet ions.  The forbidden region of the low-energy H+ (green-cyan color)

is confined into a small tear-drop shape region with a long spiral tail sweeping from the evening

sector to noon.  The corresponding region for medium-energy ions is even smaller with a relatively

short tail sweeping across noon to post-dawn.

Comparisons between fluxes computed from the RCM and Stern-Volland electric fields

show both similarities and differences:

1. The flux plots in column a, one hour after the start of the run, are nearly the same, because the

runs started from the same initial flux; the weak convection fields, operating only for an hour,

have only had a mild effect on the fluxes.

2. In column b, representing the situation nine hours after the start and in the midst of the initial

injection, the RCM brings fresh ions (light colors) closer to Earth in the post-midnight sector
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than the Stern-Volland model does, because the RCM's inner-magnetospheric westward electric

field is stronger in that sector.

3. In column b, fresh medium-energy ions have swept further westward around the dayside in the

RCM run than with Stern-Volland, mainly because of the different boundary conditions on the

potentials in the two cases.  The Stern-Volland potential, for this particular case, is symmetric

about a line between 14 and 02 local time, while the boundary potential in the RCM case is

symmetric about the noon-midnight line.  The 2-hour rotation in the Stern-Volland potential

was chosen to optimize agreement with CCE data.  That rotation is qualitatively consistent with

conclusion of Gussenhoven et al. [1981].  Consequently, in the Stern-Volland run, ions that

drifted around the dusk side tended to be swept out of the magnetosphere before reaching local

noon, while in the RCM case, they could drift further west.  However, note that the near-Earth

region of the RCM potential patterns does exhibit an eastward rotation similar to the Stern-

Volland patterns.  This rotation occurs naturally in the RCM as a result of the day-night

asymmetry in ionospheric conductance [Wolf, 1970] and the tendency for the region-2

Birkeland currents to rotate the pattern near the Earth [e.g., Wolf, 1983; Senior and Blanc,

1984].

4. In column c, representing a time near the end of the main phase, the inner edge of the freshly

injected particles is closer to Earth in the RCM run than in the Stern-Volland case.  The basic

reason is that the electric fields at low L are generally stronger in the RCM than in the Stern-

Volland model.  Late in the main phase, the RCM developed a region of particularly strong

outward field at L ~ 3 in the dusk-midnight quadrant.  This feature is typical of the RCM in

conditions of strong convection; it appears to be the same feature that was noted by Rowland

and Wygant [1998] and Burke et al. [1998] in CRRES electric-field data for major storms.  On

the dusk side, the plasma-sheet ions, which generate the region-2 Birkeland currents, penetrate

closer to Earth than the electrons, which control ionospheric conductance.  In the dusk-midnight

sector, region-2 currents tend to flow down into a region of the ionosphere that does not have a

strongly enhanced conductance, and strong electric fields are required to drive ionospheric
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currents poleward through the low-conductance zone to the region of strong electron

precipitation.  This is basically the mechanism proposed by Southwood and Wolf [1978] to

explain subauroral ion drift events, but the region of enhanced electric field becomes broader in

latitude during strong convection, when the inner edge of the plasma sheet electrons is strongly

eroded by precipitation losses.  (See Garner [2000] or Sazykin [2000] for a more complete

discussion.)

Figure 1 shows the comparison of the pitch-angle-averaged H+ fluxes near the end (20–23

UT) of May 2, 1986, calculated by the two simulations.  Energy spectra are shown at six locations

along the CCE orbit.  Dashed lines with open circles are results from the Fok model with Stern-

Volland convection.  These fluxes are slightly different from those displayed in Figure 3 in Fok et

al. [1996], because the previously published results were calculated with the spatial grid at the

equator and with different numerical approaches.  Solid lines are results from the CRCM.  The

corresponding CCE measurements (dots) are also plotted in Figure 1.  As shown in the figure, both

runs give similar results in the outer ring current (Figure 1a, f).  However, at L < 3.5, CRCM always

produces higher fluxes than the old model, consistent with the fact that the RCM predicts a stronger

inner magnetospheric convection electric field than the Stern-Volland model does.  The most

remarkable difference between the two simulations is found in Figure 1c.  The CRCM successfully

reproduces the high H+ fluxes at low energy seen by CCE/CHEM at L ~ 2.3 at 1100 LT, while the

Stern-Volland convection field fails to produce low-energy flux at the observed level.  This result

amply illustrates that the electric connection between the ionosphere and the magnetosphere allows

deep penetration of plasma sheet plasmas during geomagnetic active periods.  However, CRCM

tends to overestimate ion fluxes on the nightside in the inner ring current region (Figure 1d, e).  The

inaccuracy in the ionospheric conductance model and the potential at the poleward boundary are

possible causes of this discrepancy.

5. Summary



14

We have developed a comprehensive computational model of the Earth's ring current that

follows the evolution of the ring current plasma while conserving the first two adiabatic invariants in

a self-consistently calculated electric field, the Comprehensive Ring Current Model (CRCM):

1. The CRCM couples the Rice Convection Model and the Fok kinetic model.  It combines the

strengths of the two parent models and includes most of the important physics of the ring

current.

2. The CRCM is the first ring current model that considers arbitrary ion pitch-angle distributions

and computes the electric coupling between the ionosphere and the magnetosphere.

3. The CRCM has been used to simulate the main phase of the magnetic storm on May 2, 1986.

There was excellent agreement with particle measurements made during the storm.  In particular,

CRCM reproduces the observed high fluxes of keV protons at the inner edge of the dayside

ring current.  Previous simulation which applied Stern-Volland convection model failed to

produce fluxes at the observed levels at this energy and location, owing to the over- simplified

representation of electric field penetration from outer to inner magnetosphere.

The merging of these two well developed models should provide a powerful tool for advancing

understanding of ring current dynamics, the role of the ionosphere in the ring current development,

and solar wind control of the ring current.

Appendix: Relationship between f and η

The total number of particles per unit magnetic flux is given by

ηtotal =
ds

B∫ fd3∫ p = ds

B∫ f
0

∞
∫0

∞
∫ 4πp⊥ dp⊥ d p|| (A1)
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We have used the fact that f p p f p p( , ) ( , )|| ||− =⊥ ⊥ .  It is convenient to integrate over just the

magnitude of p||, because we are going to convert this to an integral over Μ and K, and neither of

these quantities distinguishes the sign of p||.  Doing this conversion using the Jacobian gives

dMdK =

∂M

∂p⊥

∂M

∂ p||
∂K

∂p⊥

∂K

∂ p||

dp⊥ d p|| (A2)

The derivatives are all taken at a specific position.  Since

M =
p⊥

2

2moB (A3)

we have

∂M

∂p⊥
=

p⊥
moB

   and
  

∂M

∂ p||

= 0 (A4)

The Jacobian derivative ∂K/∂|p||| is taken at constant p⊥  at a point on the field line:

∂K

∂ p||











p⊥

= dK

dBm

∂Bm

∂ p||











p⊥

= dK

dBm

p||

moM
(A5)

Substituting (A4) and (A5) in (A2) gives

dMdK = dK

dBm

p⊥ p||

mo
2MB

dp⊥ d p|| (A6)

Substituting (A6) in (A1), the integral over the flux tube reduces to ∫ds/|p|||, and many factors cancel

out.  The result is

ηtotal = 4 2πmo
3/2 f ∫∫ M1/2dMdK (A7)

The η  associated with a range ∆Μ  ∆K, which is the typical η  in the RCM, is related to the

distribution function by
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η j = 4 2πmo
3/2 f Mj

1/2dMjdK j  (A8)
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Figure Captions

Plate 1.  Top panel: Kp values on May 2, 1986.  Panels (i): calculated H+ flux in cm-2s-1sr-1keV-1

at the equator at times labeled on the Kp plot.  Ions with low energies (1–5 keV), medium-energies

(5–40 keV) and high energies (40–300 keV) are represented by red, green and blue colors

respectively.  Panels (ii): potential contours calculated by the RCM module of CRCM.  Panels (iii)

and (iv) are the same as (i) and (ii), except they are fluxes and potentials calculated using the Stern-

Volland model.  Noon is to the left in Panels (i)–(iv).

Figure 1.  Simulated pitch-angle-averaged H+ fluxes at 6 locations near the end of the storm main

phase on May 2, 1986, at  20–23 UT.  Dashed lines with open circles are fluxes calculated with

Stern-Volland type convection.  Solid lines are fluxes calculated with RCM convection field.  The

corresponding CCE/CHEM measurements are shown in filled circles.
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